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4.6 Montel’s Theorem

Let X be a topological space. We denote by C(X) the set of complex valued
continuous functions on X.

Definition 4.26. A topological space is called separable iff it contains a
countable dense subset.

Definition 4.27. Let X be a topological space, F' C C(X). F is called
pointwise bounded iff for each a € X there is a constant M > 0 such that
|f(a)| < M for all f € F. F is called locally bounded iff for each a € X there
is a constant M > 0 and a neighborhood U C X of @ such that |f(x)] < M
for all x € U and for all f € F.

Definition 4.28. Let X be a topological space. A subset FF C C(X) is
called equicontinuous at a € X iff for every e > 0 there exists a neighborhood
U C X of a such that

lf(x) — fly)| <e forall z,yeU.

A subset F' C C(X) is called locally equicontinuous iff F' is equicontinuous
at a for all a € X.

Definition 4.29. Let X be a topological space. A subset F' C C(X) is called
normal iff every sequence of elements of F' has a subsequence that converges
uniformly on every compact subset of X.

Theorem 4.30 (Arzela-Ascoli). Let X be a separable topological space and
F CC(X). Suppose that F is pointwise bounded and locally equicontinuous.
Then, F is normal.

Proof. Let {fn}nen be a sequence of elements of F. We have to show that
there exists a subsequence that converges uniformly on any compact subset
of X. We encode subsequences of a sequence through infinite subsets of N in
the obvious way. Let {x}ren be a sequence of points which is dense in X.
Set Ny := N and construct iteratively N C Ni_1 as follows. The sequence
{fn(xk)tnen,_, is bounded by the assumption of pointwise boundedness of
F'. Thus there exists a convergent subsequence given by an infinite subset
Ny, € Ni_1. Proceeding in this way we obtain a sequence of decreasing in-
finite subsets Ng D N3 D Na D .... Now consider the sequence {n;};en of
strictly increasing natural numbers n; obtained as follows: n; is the [th ele-
ment of the set N;. It is then clear that the sequence { fy,(x)}ien converges
for every k£ € N.
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Now let K C X be compact and choose ¢ > 0. Since F' is locally
equicontinuous, we find for each a € K an open neighborhood U, C X such
that |f(z) — f(y)] < eforall f € Fif x,y € U,. Since K is compact there
are finitely many points aq,...,a, € K such that Ug,,...,U,,, cover K.
Since {xj}ren is dense in X there exists for each j € 1,...,m an index k;
such that xy, € Uy;. Now, {fn,(7k;)}ien converges and is Cauchy for all
j € {1,...,m}. In particular, by taking a maximum if necessary we can
find lop € N such that |f,(zk;) — fu,(zk;)| < € for all 4,1 > Iy and for all
jed{l,...,m}.

Now fix p € K. Then, there is j € {1,...,m} such that p € U,,. For
1,1 > ly we thus obtain the estimate

i (p) = fry(P)] < | fni () = fri ()]
+ s @ry) = oy @r)| + [ (@0;) = fi (P)] < Be.

In particular, this implies that {fy, };en converges uniformly on K. O

Theorem 4.31 (Montel). Let D C C be a region and F C O(D). Suppose
that F' 1is locally bounded. Then, F' is normal.

Proof. We show that F' is locally equicontinuous. The result follows then
from the Arzela-Ascoli Theorem 4.30. Let zg € D and choose € > 0. Since F
is locally bounded, there exists a constant M > 0 and r > 0 with Ba,(2) C
D and such that |f(z)| < M for all z € Ba,(29) and all f € F. The Cauchy
Integral Formula (Theorem 2.20) yields for all f € F and z,w € Ba,(20)
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If we restrict to z,w € B,(z9) we have the estimate |({ — 2)(¢ — w)| > r?
for all { € 0Bay(2p). Combining this with the standard integral estimate
(Proposition 2.7) we obtain,

21/ llo5a0: 2M
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Choosing § := min {7‘, Af—]\}} yields the estimate
[f(z) = fw)| <e Vz,w € Bs(2),

showing local equicontinuity. This completes the proof. O
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Exercise 58. Let X be a metric space and F' C C(X). Suppose that F' is
normal. Show that F' is locally bounded.

Exercise 59 (Vitali’s Theorem). Let D C C be a region and {f,}nen a
locally bounded sequence of holomorphic functions on D. Let f € O(D) and
A:={z € D :limy_o frn(z)exists and f(z) = lim,— fn(2)}. Suppose that
A has a limit point in D. Show that f, — f uniformly on compact subsets
of D for n — oo.

4.7 The Riemann Mapping Theorem

Proposition 4.32. Let D C C be a region and {fn}nen a sequence of holo-
morphic functions f, € O(D) that converges uniformly on any compact sub-
set of D to f. Then, f € O(D) and the sequence {fék)}neN converges uni-
formly on any compact subset of D to f*) for all k € N.

Proof. Let zg € D and set 7 > 0 such that B,(z) C D. By Corollary 2.15 f,
is integrable in B, (zp). For any closed path v in B,.(z9) we thus have

[1- [t i [ 50
|

where we have used Proposition 2.8 to interchange the integral with the
limit. Thus, f is integrable in B, (zp) and hence holomorphic there by Corol-
lary 2.23. Since the choice of zg was arbitrary we find that f is holomorphic
in all of D.

Fix k € N and consider zp € D. Choose r > 0 such that By, (z9) C D.
Now for each z € B,(z9) we have the Cauchy estimate (Proposition 2.31),

k! k!
£ (2) — F8)(2)] < ﬁ”fn = fllos,z) < rkafn bl

For € > 0 there is by uniform convergence of {f,}nen an ng € N such that
|fu(2) — f(2)] < erk/K! for all n > ng and all 2z € Ba,(29). Hence, ‘fék) (2) —
f®)(2)] < e for all n > ng and all z € B,(2). That is, {fﬁk)}neN converges
to f*) uniformly on some neighborhood of every point of D. To obtain
uniform convergence on a compact subset K C D it is merely necessary to
cover K with finitely many such neighborhoods. O

Theorem 4.33 (Hurwitz). Let D C C be a region and {fn}nen a sequence
of functions fn, € O(D) converging uniformly in every compact subset of D
to f. Let a € D and r > 0 such that By(a) C D. Suppose that f(z) # 0 for
all z € OBy(a). Then, there exists no € N such that f and f, have the same
number of zeros in B(a) for all n > nyg.
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Proof. Set ¢ := inf{|f(2)| : 2 € 0B,(a)}. By the assumptions 6 > 0 and
{fn}nen converges uniformly on 0B, (a). Thus, there exists ny € N such that
|fn(2) — f(2)] < &/2 for all n > ng and all z € dB,(a). But this implies,

£ (2) = fu(2)| < g <[fEI<IfEI+faz)] Vn = no,Vz € 0B, (a).

Applying Rouché’s Theorem 3.21 yields the desired result. O

Proposition 4.34. Let D C C be a region and { f,}nen a sequence of func-
tions fn, € O(D) converging uniformly in every compact subset of D to f.
Suppose that for all n € N, f,, has no zeros. Then, either f =0 or f has no
2eros.

Proof. Exercise. O

Proposition 4.35. Let D C C be a region and {fn}lnen a sequence of in-
jective functions f, € O(D) converging uniformly in every compact subset of
D to f. Then, either f is constant or f is injective.

Proof. Suppose that f is not constant. Let a in D and set p := f(a) and
pn := fn(a) for all n € N. By injectivity f, — pn never vanishes on D \ {a}.
On the other hand, the sequence {f, — pn}nen converges uniformly in any
compact subset of D to f —p. Since f —p # 0, Proposition 4.34 implies that
f — p has no zeros in D \ {a}. In other words, f does not take the value
p at any point of D \ {a}. Since we chose a arbitrarily it follows that f is
injective. O

Theorem 4.36 (Riemann Mapping Theorem). Ewvery homologically simply
connected region which is different from C is conformally equivalent to D.

Proof. Let D be the region in question. Fix zp € D arbitrarily. Let F' C
O(D) be the set of holomorphic functions f € O(D) which are injective,
whose image is contained in D and such that f(z9) = 0. Our strategy is to
find an element of F' which is a biholomorphism D — D.

First we show that F' is not empty. By assumption D # C, so we can
choose a € C\ D. The function f(z) := z — a is holomorphic and zero-
free in D, so according to Theorem 4.25 there is a holomorphic square root
g € O(D) with ¢ = f. If g(z1) = g(z) then (9(:1))® = (g(25))* and
S0 z1 = z9 since f is injective. Therefore also g is injective. Moreover, if
g(z1) = —g(22) we can draw the same conclusion z; = 22, but this time we
get a contradiction, since g is zero-free. Thus, if z € C is in the image of
g, then —z cannot be in the image of g. Now since ¢ is not constant the
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Open Mapping Theorem 2.40 ensures that g(D) is open. In particular there
exists w € C and r > 0 such that B,(w) C g(D). But applying the previous
statement to all elements of B,(w) we obtain B,(—w)Ng(D) = 0. It is now
easy to see that the function h € O(D) defined by h(z) := r/(g(z) + w) is
also injective and satisfies h(D) C D. Setting v := h(zg), we have D,oh € F
since D, € Aut(D) and D,(v) = 0.

Since D is open, there exists 7 > 0 such that B,(z9) C D. Using the
Cauchy estimate (Proposition 2.31) we find the bound |f/(z0)| < 1/r for all

f € F. This implies that

M := sup{|f'(z0)| : f € F}

is well defined. On the other hand we will show that if f(D) # D for some
f € F, then there exists g € F such that |¢'(z0)] > |f'(20)|- This implies
that h € F is a biholomorphism D — D iff |h'(29)| = M. We will then show
that such an h exists.

Consider some f € F such that f(D) # D. Choose p € D\ f(D).
Since D), € Aut(D), the composition D, o f is injective and Dy, o f(D) C D.
Furthermore, Dyo f is zero-free since D, 1(0) = {p}. Since D is homologically
simply connected we can find a holomorphic square root g € O(D) with
g = D, o f according to Theorem 4.25. In fact, it is clear that g is injective
and g(D) C D. Set w := ¢g(20). Then h := Dy, 0 g € F. Consider now the
holomorphic map k : D — D given by k(z) = D,((Dw(2))?). Then, f = koh
and applying the chain rule for derivatives we obtain

f'(z0) = K'(h(20))h'(20) = K'(0)1' (20)-

Noting that k£(0) = 0 we can apply the Schwarz Lemma 4.11. Since k is not
a rotation, this implies |k’(0)| < 1. Hence, |f'(z0)| < |h/(20)| since h'(2) # 0
by injectivity of h.

The image of all functions in F' is contained in the bounded set D, so in
particular £ is locally bounded. According to Montel’s Theorem 4.31 this
implies that F' is normal. Consider now a sequence {fp}nen of elements
of F such that |f](z0)] — M as n — oco. Since F is normal, there is a
subsequence { fy, }xen which converges uniformly on any compact subset of
D to a function f € O(D) by Proposition 4.32. By the same Proposition
we have convergence of the derivative and thus |f'(z9)] = M as desired. It
remains to show that f € F. From the limit process it is clear that f(z9) =0
and f(D) C D. Since f is not constant (in particular, f’(z9) # 0) the Open
Mapping Theorem 2.40 implies that f(D) must be open and so we must have
f(D) € D. The injectivity of f follows from Proposition 4.35. Hence f € F.
This completes the proof. O
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Proposition 4.37. Let D C C be a homologically simply connected region,
a € D. Then, there exists exactly one biholomorphism f: D — D such that
f(a) =0 and f'(a) > 0.

Proof. Exercise. O

Exercise 60. Show that a homologically simply connected region cannot
be conformally equivalent to a region that is not homologically simply con-
nected.



