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4.6 Montel's Theorem

Let X be a topological space. We denote by C(X) the set of complex valued

continuous functions on X.

De�nition 4.26. A topological space is called separable i� it contains a

countable dense subset.

De�nition 4.27. Let X be a topological space, F ⊆ C(X). F is called

pointwise bounded i� for each a ∈ X there is a constant M > 0 such that

|f(a)| < M for all f ∈ F . F is called locally bounded i� for each a ∈ X there

is a constant M > 0 and a neighborhood U ⊆ X of a such that |f(x)| < M
for all x ∈ U and for all f ∈ F .

De�nition 4.28. Let X be a topological space. A subset F ⊆ C(X) is

called equicontinuous at a ∈ X i� for every ε > 0 there exists a neighborhood

U ⊆ X of a such that

|f(x) − f(y)| < ε for all x, y ∈ U.

A subset F ⊆ C(X) is called locally equicontinuous i� F is equicontinuous

at a for all a ∈ X.

De�nition 4.29. Let X be a topological space. A subset F ⊆ C(X) is called
normal i� every sequence of elements of F has a subsequence that converges

uniformly on every compact subset of X.

Theorem 4.30 (Arzela-Ascoli). Let X be a separable topological space and

F ⊆ C(X). Suppose that F is pointwise bounded and locally equicontinuous.

Then, F is normal.

Proof. Let {fn}n∈N be a sequence of elements of F . We have to show that

there exists a subsequence that converges uniformly on any compact subset

of X. We encode subsequences of a sequence through in�nite subsets of N in

the obvious way. Let {xk}k∈N be a sequence of points which is dense in X.

Set N0 := N and construct iteratively Nk ⊆ Nk−1 as follows. The sequence

{fn(xk)}n∈Nk−1
is bounded by the assumption of pointwise boundedness of

F . Thus there exists a convergent subsequence given by an in�nite subset

Nk ⊆ Nk−1. Proceeding in this way we obtain a sequence of decreasing in-

�nite subsets N0 ⊃ N1 ⊃ N2 ⊃ . . . . Now consider the sequence {nl}l∈N of

strictly increasing natural numbers nl obtained as follows: nl is the lth ele-

ment of the set Nl. It is then clear that the sequence {fnl
(xk)}l∈N converges

for every k ∈ N.
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Now let K ⊆ X be compact and choose ε > 0. Since F is locally

equicontinuous, we �nd for each a ∈ K an open neighborhood Ua ⊆ X such

that |f(x) − f(y)| < ε for all f ∈ F if x, y ∈ Ua. Since K is compact there

are �nitely many points a1, . . . , am ∈ K such that Ua1 , . . . , Uam cover K.

Since {xk}k∈N is dense in X there exists for each j ∈ 1, . . . , m an index kj

such that xkj
∈ Uaj . Now, {fnl

(xkj
)}l∈N converges and is Cauchy for all

j ∈ {1, . . . , m}. In particular, by taking a maximum if necessary we can

�nd l0 ∈ N such that |fni(xkj
) − fnl

(xkj
)| < ε for all i, l ≥ l0 and for all

j ∈ {1, . . . , m}.
Now �x p ∈ K. Then, there is j ∈ {1, . . . , m} such that p ∈ Uaj . For

i, l ≥ l0 we thus obtain the estimate

|fni(p) − fnl
(p)| ≤ |fni(p) − fni(xkj

)|
+ |fni(xkj

) − fnl
(xkj

)| + |fnl
(xkj

) − fnl
(p)| < 3ε.

In particular, this implies that {fnl
}l∈N converges uniformly on K.

Theorem 4.31 (Montel). Let D ⊆ C be a region and F ⊆ O(D). Suppose

that F is locally bounded. Then, F is normal.

Proof. We show that F is locally equicontinuous. The result follows then

from the Arzela-Ascoli Theorem 4.30. Let z0 ∈ D and choose ε > 0. Since F
is locally bounded, there exists a constant M > 0 and r > 0 with B2r(z0) ⊂
D and such that |f(z)| < M for all z ∈ B2r(z0) and all f ∈ F . The Cauchy

Integral Formula (Theorem 2.20) yields for all f ∈ F and z, w ∈ B2r(z0)

f(z) − f(w) =
1

2πi

∫
∂B2r(z0)

(
f(ζ)
ζ − z

− f(ζ)
ζ − w

)
dζ

=
z − w

2πi

∫
∂B2r(z0)

f(ζ)
(ζ − z)(ζ − w)

dζ.

If we restrict to z, w ∈ Br(z0) we have the estimate |(ζ − z)(ζ − w)| > r2

for all ζ ∈ ∂B2r(z0). Combining this with the standard integral estimate

(Proposition 2.7) we obtain,

|f(z) − f(w)| ≤ |z − w|
2‖f‖∂B2r(z0)

r
< |z − w|2M

r
.

Choosing δ := min
{
r, rε

4M

}
yields the estimate

|f(z) − f(w)| < ε ∀z, w ∈ Bδ(z0),

showing local equicontinuity. This completes the proof.
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Exercise 58. Let X be a metric space and F ⊆ C(X). Suppose that F is

normal. Show that F is locally bounded.

Exercise 59 (Vitali's Theorem). Let D ⊆ C be a region and {fn}n∈N a

locally bounded sequence of holomorphic functions on D. Let f ∈ O(D) and
A := {z ∈ D : limn→∞ fn(z) exists and f(z) = limn→∞ fn(z)}. Suppose that
A has a limit point in D. Show that fn → f uniformly on compact subsets

of D for n → ∞.

4.7 The Riemann Mapping Theorem

Proposition 4.32. Let D ⊆ C be a region and {fn}n∈N a sequence of holo-

morphic functions fn ∈ O(D) that converges uniformly on any compact sub-

set of D to f . Then, f ∈ O(D) and the sequence {f (k)
n }n∈N converges uni-

formly on any compact subset of D to f (k) for all k ∈ N.

Proof. Let z0 ∈ D and set r > 0 such that Br(z) ⊂ D. By Corollary 2.15 fn

is integrable in Br(z0). For any closed path γ in Br(z0) we thus have∫
γ
f =

∫
γ

lim
n→∞

fn = lim
n→∞

∫
γ
fn = 0,

where we have used Proposition 2.8 to interchange the integral with the

limit. Thus, f is integrable in Br(z0) and hence holomorphic there by Corol-

lary 2.23. Since the choice of z0 was arbitrary we �nd that f is holomorphic

in all of D.

Fix k ∈ N and consider z0 ∈ D. Choose r > 0 such that B2r(z0) ⊆ D.

Now for each z ∈ Br(z0) we have the Cauchy estimate (Proposition 2.31),

|f (k)
n (z) − f (k)(z)| ≤ k!

rk
‖fn − f‖∂Br(z) ≤

k!
rk

‖fn − f‖
B2r(z0)

.

For ε > 0 there is by uniform convergence of {fn}n∈N an n0 ∈ N such that

|fn(z)− f(z)| < ε rk/k! for all n ≥ n0 and all z ∈ B2r(z0). Hence, |f (k)
n (z)−

f (k)(z)| < ε for all n ≥ n0 and all z ∈ Br(z0). That is, {f (k)
n }n∈N converges

to f (k) uniformly on some neighborhood of every point of D. To obtain

uniform convergence on a compact subset K ⊂ D it is merely necessary to

cover K with �nitely many such neighborhoods.

Theorem 4.33 (Hurwitz). Let D ⊆ C be a region and {fn}n∈N a sequence

of functions fn ∈ O(D) converging uniformly in every compact subset of D
to f . Let a ∈ D and r > 0 such that Br(a) ⊂ D. Suppose that f(z) 6= 0 for

all z ∈ ∂Br(a). Then, there exists n0 ∈ N such that f and fn have the same

number of zeros in Br(a) for all n ≥ n0.
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Proof. Set δ := inf{|f(z)| : z ∈ ∂Br(a)}. By the assumptions δ > 0 and

{fn}n∈N converges uniformly on ∂Br(a). Thus, there exists n0 ∈ N such that

|fn(z) − f(z)| < δ/2 for all n ≥ n0 and all z ∈ ∂Br(a). But this implies,

|f(z) − fn(z)| <
δ

2
< |f(z)| ≤ |f(z)| + |fn(z)| ∀n ≥ n0,∀z ∈ ∂Br(a).

Applying Rouché's Theorem 3.21 yields the desired result.

Proposition 4.34. Let D ⊆ C be a region and {fn}n∈N a sequence of func-

tions fn ∈ O(D) converging uniformly in every compact subset of D to f .
Suppose that for all n ∈ N, fn has no zeros. Then, either f = 0 or f has no

zeros.

Proof. Exercise.

Proposition 4.35. Let D ⊆ C be a region and {fn}n∈N a sequence of in-

jective functions fn ∈ O(D) converging uniformly in every compact subset of

D to f . Then, either f is constant or f is injective.

Proof. Suppose that f is not constant. Let a in D and set p := f(a) and

pn := fn(a) for all n ∈ N. By injectivity fn − pn never vanishes on D \ {a}.
On the other hand, the sequence {fn − pn}n∈N converges uniformly in any

compact subset of D to f −p. Since f −p 6= 0, Proposition 4.34 implies that

f − p has no zeros in D \ {a}. In other words, f does not take the value

p at any point of D \ {a}. Since we chose a arbitrarily it follows that f is

injective.

Theorem 4.36 (Riemann Mapping Theorem). Every homologically simply

connected region which is di�erent from C is conformally equivalent to D.

Proof. Let D be the region in question. Fix z0 ∈ D arbitrarily. Let F ⊆
O(D) be the set of holomorphic functions f ∈ O(D) which are injective,

whose image is contained in D and such that f(z0) = 0. Our strategy is to

�nd an element of F which is a biholomorphism D → D.
First we show that F is not empty. By assumption D 6= C, so we can

choose a ∈ C \ D. The function f(z) := z − a is holomorphic and zero-

free in D, so according to Theorem 4.25 there is a holomorphic square root

g ∈ O(D) with g2 = f . If g(z1) = g(z2) then (g(z1))2 = (g(z2))2 and

so z1 = z2 since f is injective. Therefore also g is injective. Moreover, if

g(z1) = −g(z2) we can draw the same conclusion z1 = z2, but this time we

get a contradiction, since g is zero-free. Thus, if z ∈ C is in the image of

g, then −z cannot be in the image of g. Now since g is not constant the
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Open Mapping Theorem 2.40 ensures that g(D) is open. In particular there

exists w ∈ C and r > 0 such that Br(w) ⊂ g(D). But applying the previous

statement to all elements of Br(w) we obtain Br(−w)∩ g(D) = ∅. It is now
easy to see that the function h ∈ O(D) de�ned by h(z) := r/(g(z) + w) is

also injective and satis�es h(D) ⊆ D. Setting v := h(z0), we have Dv ◦h ∈ F
since Dv ∈ Aut(D) and Dv(v) = 0.

Since D is open, there exists r > 0 such that Br(z0) ⊂ D. Using the

Cauchy estimate (Proposition 2.31) we �nd the bound |f ′(z0)| < 1/r for all

f ∈ F . This implies that

M := sup{|f ′(z0)| : f ∈ F}

is well de�ned. On the other hand we will show that if f(D) 6= D for some

f ∈ F , then there exists g ∈ F such that |g′(z0)| > |f ′(z0)|. This implies

that h ∈ F is a biholomorphism D → D i� |h′(z0)| = M . We will then show

that such an h exists.

Consider some f ∈ F such that f(D) 6= D. Choose p ∈ D \ f(D).
Since Dp ∈ Aut(D), the composition Dp ◦ f is injective and Dp ◦ f(D) ⊂ D.
Furthermore, Dp◦f is zero-free since D−1

p (0) = {p}. Since D is homologically

simply connected we can �nd a holomorphic square root g ∈ O(D) with

g2 = Dp ◦ f according to Theorem 4.25. In fact, it is clear that g is injective

and g(D) ⊆ D. Set w := g(z0). Then h := Dw ◦ g ∈ F . Consider now the

holomorphic map k : D → D given by k(z) = Dp((Dw(z))2). Then, f = k ◦h
and applying the chain rule for derivatives we obtain

f ′(z0) = k′(h(z0))h′(z0) = k′(0)h′(z0).

Noting that k(0) = 0 we can apply the Schwarz Lemma 4.11. Since k is not

a rotation, this implies |k′(0)| < 1. Hence, |f ′(z0)| < |h′(z0)| since h′(z0) 6= 0
by injectivity of h.

The image of all functions in F is contained in the bounded set D, so in

particular F is locally bounded. According to Montel's Theorem 4.31 this

implies that F is normal. Consider now a sequence {fn}n∈N of elements

of F such that |f ′
n(z0)| → M as n → ∞. Since F is normal, there is a

subsequence {fnk
}k∈N which converges uniformly on any compact subset of

D to a function f ∈ O(D) by Proposition 4.32. By the same Proposition

we have convergence of the derivative and thus |f ′(z0)| = M as desired. It

remains to show that f ∈ F . From the limit process it is clear that f(z0) = 0
and f(D) ⊆ D. Since f is not constant (in particular, f ′(z0) 6= 0) the Open
Mapping Theorem 2.40 implies that f(D) must be open and so we must have

f(D) ⊆ D. The injectivity of f follows from Proposition 4.35. Hence f ∈ F .

This completes the proof.
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Proposition 4.37. Let D ⊂ C be a homologically simply connected region,

a ∈ D. Then, there exists exactly one biholomorphism f : D → D such that

f(a) = 0 and f ′(a) > 0.

Proof. Exercise.

Exercise 60. Show that a homologically simply connected region cannot

be conformally equivalent to a region that is not homologically simply con-

nected.


